Development Statistics

S02 Probability

Fujikawa, Kiyoshi Nagoya University, GSID

Key wards for probability

Experiment (試行)
For example, throwing a dice
Sample space (標本空間)
Outcome of an experiment
Event (事象)

- Event (事象)
 - A certain set in an outcome
- Probability (確率)
 - Ratio of "event / sample space"

Probability

Basic rule of probability

Probability is between 0 and 1 $0 \le P(A) \le 1$ ●Compliment event rule (余事象確率) P(A) = 1 - P(A)●Joint probability (和事象確率) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Probability

Mutually exclusive events

• Definition of "exclusive"

If A and B are exclusive $P(A \cap B) = 0$

 Joint probability of Mutually exclusive events If A and B are exclusive $P(A \cup B) = P(A) + P(B)$

Probability

Conditional Probability

• Conditional Probability $P(A | B) = P(A \cap B)/P(B)$

•Example: throwing a dice •Under the condition of B: "<=3", the probability of A: "even number" P(A | B) = (1/6)/(1/2) = 1/3

Probability

Independent event

• Definition of independence P(A | B) = P(A), P(B | A) = P(B)• Product rule $P(A \cap B) = P(A) \cdot P(B)$ • Ex: throwing 2 dices A:1 & B:1 $P(A \cap B) = (1/6) \cdot (1/6) = 1/36$

Probability

5

Union rule

• There are *n* independent event $P(A_1 \bigcup A_2 \bigcup \cdots \bigcup A_n)$ $= 1 - P(\overline{A}_1) \cdot P(\overline{A}_2) \cdots P(\overline{A}_n)$

•Ex: throwing 2 dices A:1 or B:1 in other words, at least one time 1 $P(A \cup B) = 1 - (5/6) \cdot (5/6) = 9/36 = 1/4$

Probability

Marginal Probability

	Event B1	Event B2	Event B3	Total B
Event A1	P11	P12	P13	P1t
Event A1	P21	P22	P23	P2t
Total A	Pt1	Pt2	Pt2	1.0

- Joint Probability P11, P12, P13
- Marginal Probability P1t or Pt1
- Conditional Probability P11/P1t, P11/Pt1

7

Quiz 1 number of the students

	Japanese	Other Asian	African	Others
Male	26	28	30	52
Female	24	20	14	44
Secret	0	2	6	4

- 1. Probability of "African"
- 2. Probability of "Asian"
- 3. Under "African", Probability of "male"
- 4. Probability of "African" and "male"

Probability

Permutation (順列)

• The number of the arrangements

•Total: *n*

•Selection: *r*

$$_{n}P_{r} = \frac{n!}{(n-r)!} = \frac{n \cdot (n-1) \cdots 2 \cdot 1}{(n-r) \cdot (n-r-1) \cdots 2 \cdot 1}$$

9

Combination (組合わせ)

• The number of the selection • Total: *n* • Selection: *r* ${}_{n}C_{r} = \frac{n!}{r!(n-r)!}$ $= \frac{n \cdot (n-1) \cdots 2 \cdot 1}{[r \cdot (r-1) \cdots 2 \cdot 1][(n-r) \cdot (n-r-1) \cdots 2 \cdot 1]]}$

Probability

11

Quiz 2a

You have 6 books

- 1. If you arrange all of these books, how many arrangement manners?
- 2. If you choose 3 books, how many arrangement manners?
- 3. If you choose 3 books, how many combination manners?

Quiz 2b

- You have 6 books:
 3 Micro economics & 3 Macro economics
 1. If you choose 3 books, probability that 3 Micro books are chosen?
 - 2. If you choose 3, probability that 2 Micro & 1 Macro is chosen?
 - 3. If you choose 1 and return this & repeat 3 times, probability that 3 Micros are chosen?

Probability

13

Quiz 3

- There are 30 PCs in a class room & you know 3 are broken.
- 3 students choose PC at random,
 - 1. probability that 3 students choose all broken?
 - 2. probability that 3 students never choose broken?
- 10 students choose PC at random,
 - 1. probability that all 3 broken PCs are chosen?
 - 2. probability that 3 broken PCs are never chosen?