Lect 3 Exercise

今日のテーマ

- 1. 写像, 2. 写像の合成, 3. 単射, 全射, 全単射
- 3-1. 写像 $f:X\to Y$ に対して, $A\subset X$ の像 f(A) と $B\subset Y$ の逆像 $f^{-1}(B)$ の定義を述べよ.
- 3-2. 写像 $f: X \to Y$ に対して以下を示せ. (f が全単射, すなわち逆写像 f^{-1} を持つことは 仮定しない ことに注意せよ.)
 - (1) $A \subset X$, $B \subset Y$ に対して,

$$f(A) \subset B \iff A \subset f^{-1}(B).$$

(2) $A, B \subset Y$ に対して、

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B),$$

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$$

(3) $A, B \subset X$ に対して、

$$f(A \cup B) = f(A) \cup f(B),$$

$$f(A \cap B) \subset f(A) \cap f(B).$$

注: 一般に, $f(A \cap B) = f(A) \cap f(B)$ は成り立たない.

3-3. 写像の列 $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} W$ に対して, 以下を示せ.

$$h\circ (g\circ f)=(h\circ g)\circ f.$$

- 3-4. 写像 $f:A\to$ に対して, f が単射, 全射, 全単射であることの定義を述べよ. (講義にしたがって, いろいろな同値な定義を列挙せよ.)
- 3-5. 全単射 $f: X \to Y$ に対して、「f が全単射であることをどのように用いたかが明らかになるように」逆写像 $f^{-1}: Y \to X$ の定義を与えよ. 3-6. 写像 $f: X \to Y$ 、 $g: Y \to Z$ に対して以下を示せ.
 - (1) f, g は単射 $\Longrightarrow g \circ f$ は単射.
 - (2) f, g は全射 $\Longrightarrow g \circ f$ は全射.
 - (3) f, g は全単射 \Longrightarrow $g \circ f$ は全単射.

3-2. (1) (⇒) $f(A) \subset B$ とする. $x \in A$ とすると, $f(x) \in f(A)$. よって, 仮定より, $f(x) \in B$. すなわち, $x \in f^{-1}(B)$. 以上より, $A \in f^{-1}(B)$.

 (\longleftarrow) $A \subset f^{-1}(B)$ とする. $y \in f(A)$ とすると, f(x) = y となる $x \in A$ が存在する. このとき, 仮定より, $x \in f^{-1}(B)$. すなわち, $f(x) \in B$. よって, $y \in B$. 以上より, $f(A) \subset B$.

解説: この問題は基本である. 用いていることは, 像 f(A) と逆像 $f^{-1}(B)$ の定義だけである. この証明が理解できれば以下の問もできるし, 理解できなければ以下の問もできないであろう. まずは, この証明を良く理解し, 自分で証明を書けるようにしよう. (わかってしまえばムズカシクないですよ!)

(2)
$$\lceil f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B) \rfloor$$
 kg/c.

$$x \in f^{-1}(A \cup B) \iff f(x) \in A \cup B$$

$$\iff \lceil f(x) \in A \rfloor \ \sharp \, \text{thi} \ \lceil f(x) \in B \rfloor$$

$$\iff \lceil x \in f^{-1}(A) \rfloor \ \sharp \, \text{thi} \ \lceil x \in f^{-1}(B) \rfloor$$

$$\iff x \in f^{-1}(A) \cup f^{-1}(B)$$

(3) $\lceil f(A \cup B) = f(A) \cup f(B) \rfloor$ について.

$$y \in f(A \cup B)$$
 \iff $y = f(x)$ となる $x \in A \cup B$ が存在する \iff 「 $y = f(x)$ となる $x \in A$ が存在する」 または「 $y = f(x)$ となる $x \in B$ が存在する」 \iff (以下は自分で考えよ)

3-6. (1) $x, x' \in X$, $x \neq x'$ とする. このとき, f は単射なので, $f(x) \neq f(x')$. また, g は単射なので, $g(f(x)) \neq g(f(x'))$. よって, $g \circ f$ は単射.

(2) (この問を自分でやった後にこのコメントを見よ.)

以下の証明は正しくない (初学者に非常に良くおこる間違い). この証明の問題点を見つけ, 正しい証明に修正せよ.

証明. g は全射なので、任意の $z \in Z$ に対して g(y) = z となる $y \in Y$ が存在する.

また, f は全射なので, 任意の $y \in Y$ に対して f(x) = y となる $x \in X$ が存在する.

このとき,
$$g(f(x)) = g(y) = z$$
 となるので, $g \circ f$ は全射である.